SMARCE1 regulates metastatic potential of breast cancer cells through the HIF1A/PTK2 pathway

Aarti Sethuraman, Martin Brown, Tiffany Seagroves, Zhaohui Wu, Lawrence Pfeffer, Meiyun Fan

Research output: Contribution to journalArticle

6 Citations (Scopus)

Abstract

Background: While aberrant activation of the chromatin-remodeling SWI/SNF complexes has been associated with cancer development and progression, the role of each subunit in tumor cells is poorly defined. This study is aimed to characterize the role of SMARCE1/BAF57 in regulating metastasis of breast cancer cells. Methods: Genetic approaches and chemical inhibitors were used to manipulate the activities of SMARCE1 and its downstream targets in multiple breast cancer cell lines. Xenograft mouse models were used to analyze the role of SMARCE1 in lung metastasis in vivo. Nonadherent culture conditions were used to elucidate the role of SMARCE1 in regulating anoikis. Chromatin immunoprecipitation (ChIP), immunoprecipitation, and immunoblotting assays were designed to dissect the mechanism of action of SMARCE1. Public databases were used to investigate the relationship between SMARCE1 deregulation and breast cancer prognosis. Results: SMARCE1 knockdown reduced lung metastasis of breast cancer cells and sensitized tumor cells to anoikis. In response to loss of attachment, SMARCE1 interacted with and potentiated transcriptional activity of HIF1A, resulting in rapid PTK2 activation. Both HIF1A and PTK2 were indispensable for SMARCE1-mediated protection against anoikis by promoting activation of ERK and AKT pathways while suppressing the expression of pro-apoptotic BIM protein. Expression data analysis of a large cohort of human breast tumors revealed that high expression of SMARCE1 or PTK2 is associated with poor prognosis and tumor relapse, and PTK2 expression is positively correlated with SMARCE1 expression in basal-like and luminal B subtypes of breast tumors. Conclusions: SMARCE1 plays an essential role in breast cancer metastasis by protecting cells against anoikis through the HIF1A/PTK2 pathway. SMARCE1-mediated PTK2 activation likely plays a key role in promoting metastasis of basal-like and luminal B subtype of breast tumors.

Original languageEnglish (US)
Article number81
JournalBreast Cancer Research
Volume18
Issue number1
DOIs
StatePublished - Aug 5 2016

Fingerprint

Anoikis
Breast Neoplasms
Neoplasm Metastasis
Neoplasms
Lung
Apoptosis Regulatory Proteins
Chromatin Assembly and Disassembly
MAP Kinase Signaling System
Chromatin Immunoprecipitation
Immunoprecipitation
Immunoblotting
Heterografts
Databases
Recurrence
Cell Line

All Science Journal Classification (ASJC) codes

  • Oncology
  • Cancer Research

Cite this

SMARCE1 regulates metastatic potential of breast cancer cells through the HIF1A/PTK2 pathway. / Sethuraman, Aarti; Brown, Martin; Seagroves, Tiffany; Wu, Zhaohui; Pfeffer, Lawrence; Fan, Meiyun.

In: Breast Cancer Research, Vol. 18, No. 1, 81, 05.08.2016.

Research output: Contribution to journalArticle

@article{5d6d7dc5edde4e18aed3db4aa635a4a0,
title = "SMARCE1 regulates metastatic potential of breast cancer cells through the HIF1A/PTK2 pathway",
abstract = "Background: While aberrant activation of the chromatin-remodeling SWI/SNF complexes has been associated with cancer development and progression, the role of each subunit in tumor cells is poorly defined. This study is aimed to characterize the role of SMARCE1/BAF57 in regulating metastasis of breast cancer cells. Methods: Genetic approaches and chemical inhibitors were used to manipulate the activities of SMARCE1 and its downstream targets in multiple breast cancer cell lines. Xenograft mouse models were used to analyze the role of SMARCE1 in lung metastasis in vivo. Nonadherent culture conditions were used to elucidate the role of SMARCE1 in regulating anoikis. Chromatin immunoprecipitation (ChIP), immunoprecipitation, and immunoblotting assays were designed to dissect the mechanism of action of SMARCE1. Public databases were used to investigate the relationship between SMARCE1 deregulation and breast cancer prognosis. Results: SMARCE1 knockdown reduced lung metastasis of breast cancer cells and sensitized tumor cells to anoikis. In response to loss of attachment, SMARCE1 interacted with and potentiated transcriptional activity of HIF1A, resulting in rapid PTK2 activation. Both HIF1A and PTK2 were indispensable for SMARCE1-mediated protection against anoikis by promoting activation of ERK and AKT pathways while suppressing the expression of pro-apoptotic BIM protein. Expression data analysis of a large cohort of human breast tumors revealed that high expression of SMARCE1 or PTK2 is associated with poor prognosis and tumor relapse, and PTK2 expression is positively correlated with SMARCE1 expression in basal-like and luminal B subtypes of breast tumors. Conclusions: SMARCE1 plays an essential role in breast cancer metastasis by protecting cells against anoikis through the HIF1A/PTK2 pathway. SMARCE1-mediated PTK2 activation likely plays a key role in promoting metastasis of basal-like and luminal B subtype of breast tumors.",
author = "Aarti Sethuraman and Martin Brown and Tiffany Seagroves and Zhaohui Wu and Lawrence Pfeffer and Meiyun Fan",
year = "2016",
month = "8",
day = "5",
doi = "10.1186/s13058-016-0738-9",
language = "English (US)",
volume = "18",
journal = "Breast Cancer Research",
issn = "1465-5411",
publisher = "BioMed Central",
number = "1",

}

TY - JOUR

T1 - SMARCE1 regulates metastatic potential of breast cancer cells through the HIF1A/PTK2 pathway

AU - Sethuraman, Aarti

AU - Brown, Martin

AU - Seagroves, Tiffany

AU - Wu, Zhaohui

AU - Pfeffer, Lawrence

AU - Fan, Meiyun

PY - 2016/8/5

Y1 - 2016/8/5

N2 - Background: While aberrant activation of the chromatin-remodeling SWI/SNF complexes has been associated with cancer development and progression, the role of each subunit in tumor cells is poorly defined. This study is aimed to characterize the role of SMARCE1/BAF57 in regulating metastasis of breast cancer cells. Methods: Genetic approaches and chemical inhibitors were used to manipulate the activities of SMARCE1 and its downstream targets in multiple breast cancer cell lines. Xenograft mouse models were used to analyze the role of SMARCE1 in lung metastasis in vivo. Nonadherent culture conditions were used to elucidate the role of SMARCE1 in regulating anoikis. Chromatin immunoprecipitation (ChIP), immunoprecipitation, and immunoblotting assays were designed to dissect the mechanism of action of SMARCE1. Public databases were used to investigate the relationship between SMARCE1 deregulation and breast cancer prognosis. Results: SMARCE1 knockdown reduced lung metastasis of breast cancer cells and sensitized tumor cells to anoikis. In response to loss of attachment, SMARCE1 interacted with and potentiated transcriptional activity of HIF1A, resulting in rapid PTK2 activation. Both HIF1A and PTK2 were indispensable for SMARCE1-mediated protection against anoikis by promoting activation of ERK and AKT pathways while suppressing the expression of pro-apoptotic BIM protein. Expression data analysis of a large cohort of human breast tumors revealed that high expression of SMARCE1 or PTK2 is associated with poor prognosis and tumor relapse, and PTK2 expression is positively correlated with SMARCE1 expression in basal-like and luminal B subtypes of breast tumors. Conclusions: SMARCE1 plays an essential role in breast cancer metastasis by protecting cells against anoikis through the HIF1A/PTK2 pathway. SMARCE1-mediated PTK2 activation likely plays a key role in promoting metastasis of basal-like and luminal B subtype of breast tumors.

AB - Background: While aberrant activation of the chromatin-remodeling SWI/SNF complexes has been associated with cancer development and progression, the role of each subunit in tumor cells is poorly defined. This study is aimed to characterize the role of SMARCE1/BAF57 in regulating metastasis of breast cancer cells. Methods: Genetic approaches and chemical inhibitors were used to manipulate the activities of SMARCE1 and its downstream targets in multiple breast cancer cell lines. Xenograft mouse models were used to analyze the role of SMARCE1 in lung metastasis in vivo. Nonadherent culture conditions were used to elucidate the role of SMARCE1 in regulating anoikis. Chromatin immunoprecipitation (ChIP), immunoprecipitation, and immunoblotting assays were designed to dissect the mechanism of action of SMARCE1. Public databases were used to investigate the relationship between SMARCE1 deregulation and breast cancer prognosis. Results: SMARCE1 knockdown reduced lung metastasis of breast cancer cells and sensitized tumor cells to anoikis. In response to loss of attachment, SMARCE1 interacted with and potentiated transcriptional activity of HIF1A, resulting in rapid PTK2 activation. Both HIF1A and PTK2 were indispensable for SMARCE1-mediated protection against anoikis by promoting activation of ERK and AKT pathways while suppressing the expression of pro-apoptotic BIM protein. Expression data analysis of a large cohort of human breast tumors revealed that high expression of SMARCE1 or PTK2 is associated with poor prognosis and tumor relapse, and PTK2 expression is positively correlated with SMARCE1 expression in basal-like and luminal B subtypes of breast tumors. Conclusions: SMARCE1 plays an essential role in breast cancer metastasis by protecting cells against anoikis through the HIF1A/PTK2 pathway. SMARCE1-mediated PTK2 activation likely plays a key role in promoting metastasis of basal-like and luminal B subtype of breast tumors.

UR - http://www.scopus.com/inward/record.url?scp=84982854137&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84982854137&partnerID=8YFLogxK

U2 - 10.1186/s13058-016-0738-9

DO - 10.1186/s13058-016-0738-9

M3 - Article

VL - 18

JO - Breast Cancer Research

JF - Breast Cancer Research

SN - 1465-5411

IS - 1

M1 - 81

ER -