Synchronized Spontaneous Otoacoustic Emissions Provide a Signal-to-Noise Ratio Advantage in Medial-Olivocochlear Reflex Assays

Research output: Contribution to journalArticle

Abstract

Detection of medial olivocochlear-induced (MOC) changes to transient-evoked otoacoustic emissions (TEOAE) requires high signal-to-noise ratios (SNR). TEOAEs associated with synchronized spontaneous (SS) OAEs exhibit higher SNRs than TEOAEs in the absence of SSOAEs, potentially making the former well suited for MOC assays. Although SSOAEs may complicate interpretation of MOC-induced changes to TEOAE latency, recent work suggests SSOAEs are not a problem in non-latency-dependent MOC assays. The current work examined the potential benefit of SSOAEs in TEOAE-based assays of the MOC efferents. It was hypothesized that the higher SNR afforded by SSOAEs would permit detection of smaller changes to the TEOAE upon activation of the MOC reflex. TEOAEs were measured in 24 female subjects in the presence and absence of contralateral broadband noise. Frequency bands with and without SSOAEs were identified for each subject. The prevalence of TEOAEs and statistically significant MOC effects were highest in frequency bands that also contained SSOAEs. The median TEOAE SNR in frequency bands with SSOAEs was approximately 8 dB higher than the SNR in frequency bands lacking SSOAEs. After normalizing by TEOAE amplitude, MOC-induced changes to the TEOAE were similar between frequency bands with and without SSOAEs. Smaller MOC effects were detectable across a subset of the frequency bands with SSOAEs, presumably due to a higher TEOAE SNR. These findings demonstrate that SSOAEs are advantageous in assays of the MOC reflex.

Original languageEnglish (US)
Pages (from-to)53-65
Number of pages13
JournalJARO - Journal of the Association for Research in Otolaryngology
Volume19
Issue number1
DOIs
StatePublished - Feb 1 2018

Fingerprint

Spontaneous Otoacoustic Emissions
Signal-To-Noise Ratio
Reflex
Noise

All Science Journal Classification (ASJC) codes

  • Otorhinolaryngology
  • Sensory Systems

Cite this

@article{0528ce8b4ba44dd6854fd3fadb22db7a,
title = "Synchronized Spontaneous Otoacoustic Emissions Provide a Signal-to-Noise Ratio Advantage in Medial-Olivocochlear Reflex Assays",
abstract = "Detection of medial olivocochlear-induced (MOC) changes to transient-evoked otoacoustic emissions (TEOAE) requires high signal-to-noise ratios (SNR). TEOAEs associated with synchronized spontaneous (SS) OAEs exhibit higher SNRs than TEOAEs in the absence of SSOAEs, potentially making the former well suited for MOC assays. Although SSOAEs may complicate interpretation of MOC-induced changes to TEOAE latency, recent work suggests SSOAEs are not a problem in non-latency-dependent MOC assays. The current work examined the potential benefit of SSOAEs in TEOAE-based assays of the MOC efferents. It was hypothesized that the higher SNR afforded by SSOAEs would permit detection of smaller changes to the TEOAE upon activation of the MOC reflex. TEOAEs were measured in 24 female subjects in the presence and absence of contralateral broadband noise. Frequency bands with and without SSOAEs were identified for each subject. The prevalence of TEOAEs and statistically significant MOC effects were highest in frequency bands that also contained SSOAEs. The median TEOAE SNR in frequency bands with SSOAEs was approximately 8 dB higher than the SNR in frequency bands lacking SSOAEs. After normalizing by TEOAE amplitude, MOC-induced changes to the TEOAE were similar between frequency bands with and without SSOAEs. Smaller MOC effects were detectable across a subset of the frequency bands with SSOAEs, presumably due to a higher TEOAE SNR. These findings demonstrate that SSOAEs are advantageous in assays of the MOC reflex.",
author = "James Lewis",
year = "2018",
month = "2",
day = "1",
doi = "10.1007/s10162-017-0645-5",
language = "English (US)",
volume = "19",
pages = "53--65",
journal = "JARO - Journal of the Association for Research in Otolaryngology",
issn = "1525-3961",
publisher = "Springer New York",
number = "1",

}

TY - JOUR

T1 - Synchronized Spontaneous Otoacoustic Emissions Provide a Signal-to-Noise Ratio Advantage in Medial-Olivocochlear Reflex Assays

AU - Lewis, James

PY - 2018/2/1

Y1 - 2018/2/1

N2 - Detection of medial olivocochlear-induced (MOC) changes to transient-evoked otoacoustic emissions (TEOAE) requires high signal-to-noise ratios (SNR). TEOAEs associated with synchronized spontaneous (SS) OAEs exhibit higher SNRs than TEOAEs in the absence of SSOAEs, potentially making the former well suited for MOC assays. Although SSOAEs may complicate interpretation of MOC-induced changes to TEOAE latency, recent work suggests SSOAEs are not a problem in non-latency-dependent MOC assays. The current work examined the potential benefit of SSOAEs in TEOAE-based assays of the MOC efferents. It was hypothesized that the higher SNR afforded by SSOAEs would permit detection of smaller changes to the TEOAE upon activation of the MOC reflex. TEOAEs were measured in 24 female subjects in the presence and absence of contralateral broadband noise. Frequency bands with and without SSOAEs were identified for each subject. The prevalence of TEOAEs and statistically significant MOC effects were highest in frequency bands that also contained SSOAEs. The median TEOAE SNR in frequency bands with SSOAEs was approximately 8 dB higher than the SNR in frequency bands lacking SSOAEs. After normalizing by TEOAE amplitude, MOC-induced changes to the TEOAE were similar between frequency bands with and without SSOAEs. Smaller MOC effects were detectable across a subset of the frequency bands with SSOAEs, presumably due to a higher TEOAE SNR. These findings demonstrate that SSOAEs are advantageous in assays of the MOC reflex.

AB - Detection of medial olivocochlear-induced (MOC) changes to transient-evoked otoacoustic emissions (TEOAE) requires high signal-to-noise ratios (SNR). TEOAEs associated with synchronized spontaneous (SS) OAEs exhibit higher SNRs than TEOAEs in the absence of SSOAEs, potentially making the former well suited for MOC assays. Although SSOAEs may complicate interpretation of MOC-induced changes to TEOAE latency, recent work suggests SSOAEs are not a problem in non-latency-dependent MOC assays. The current work examined the potential benefit of SSOAEs in TEOAE-based assays of the MOC efferents. It was hypothesized that the higher SNR afforded by SSOAEs would permit detection of smaller changes to the TEOAE upon activation of the MOC reflex. TEOAEs were measured in 24 female subjects in the presence and absence of contralateral broadband noise. Frequency bands with and without SSOAEs were identified for each subject. The prevalence of TEOAEs and statistically significant MOC effects were highest in frequency bands that also contained SSOAEs. The median TEOAE SNR in frequency bands with SSOAEs was approximately 8 dB higher than the SNR in frequency bands lacking SSOAEs. After normalizing by TEOAE amplitude, MOC-induced changes to the TEOAE were similar between frequency bands with and without SSOAEs. Smaller MOC effects were detectable across a subset of the frequency bands with SSOAEs, presumably due to a higher TEOAE SNR. These findings demonstrate that SSOAEs are advantageous in assays of the MOC reflex.

UR - http://www.scopus.com/inward/record.url?scp=85033562548&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85033562548&partnerID=8YFLogxK

U2 - 10.1007/s10162-017-0645-5

DO - 10.1007/s10162-017-0645-5

M3 - Article

VL - 19

SP - 53

EP - 65

JO - JARO - Journal of the Association for Research in Otolaryngology

JF - JARO - Journal of the Association for Research in Otolaryngology

SN - 1525-3961

IS - 1

ER -