The enteric nervous system neuropeptide, bombesin, reverses innate immune impairments during parenteral nutrition

Rebecca A. Busch, Aaron F. Heneghan, Joseph Pierre, Xinying Wang, Kenneth A. Kudsk

Research output: Contribution to journalArticle

11 Citations (Scopus)

Abstract

Background: Lack of enteral stimulation during parenteral nutrition (PN) impairs mucosal immunity. Bombesin (BBS), a gastrin-releasing peptide analogue, reverses PN-induced defects in acquired immunity. Paneth cells produce antimicrobial peptides (AMPs) of innate immunity for release after cholinergic stimulation. Objective: Determine if BBS restores AMPs and bactericidal function during PN. Methods: Intravenously cannulated male ICR mice were randomized to Chow, PN, or PN+BBS (15 μg 3 times daily, n = 7 per group) for 5 days. Ileum was analyzed for AMPs (Protein: sPLA2 by fluorescence, lysozyme and RegIII-γ by western andcryptdin-4 by ELISA; mRNA: all by RT-PCR). Cholinergic stimulated (100 μM bethanechol) ileal specimens assessed Pseudomonas bactericidal activity. Ileum (Chow: n = 7; PN: n = 9; PN+BBS: n = 8) was assessed for Escherichia coli invasion in ex-vivo culture. Results: PN significantly decreased most AMPs versus Chow while BBS maintained Chow levels (sPLA2: Chow: 107 + 14*, PN: 44.6 + 7.2, PN+BBS: 78.7 + 13.4* Fl/min/μL/total protein; Lysozyme: Chow: 63.9 + 11.9*, PN: 26.8 + 6.2; PN+BBS: 64.9 + 13.8* lysozyme/total protein; RegIII-γ: Chow: 51.5 + 10.0*, PN: 20.4 + 4.3, PN+BBS: 31.0 + 8.4 RegIII-γ/total protein; Cryptdin-4: Chow: 18.4 + 1.5*, PN: 12.7 + 1.6, PN+BBS: 26.1 + 2.4*† pg/mg [all *P < 0.05 vs PN and †P < 0.05 vs Chow]). Functionally, BBS prevented PN loss of bactericidal activity after cholinergic stimulation (Chow: 25.3 + 3.6*, PN: 13.0 + 3.2; PN+BBS: 27.0 + 4.7* percent bacterial killing, *P < 0.05 vs PN). BBS reduced bacterial invasion in unstimulated tissue barely missing significance (P = 0.06). Conclusions: The enteric nervous system (ENS) controls AMP levels in Paneth cells during PN but mucosal protection by innate immunity requires both ENS and parasympathetic stimulation.

Original languageEnglish (US)
Pages (from-to)432-444
Number of pages13
JournalAnnals of surgery
Volume260
Issue number3
DOIs
StatePublished - Jan 1 2014

Fingerprint

Enteric Nervous System
Bombesin
Parenteral Nutrition
Neuropeptides
Muramidase
Peptides
Paneth Cells
Cholinergic Agents
Ileum
Innate Immunity
Proteins

All Science Journal Classification (ASJC) codes

  • Surgery

Cite this

The enteric nervous system neuropeptide, bombesin, reverses innate immune impairments during parenteral nutrition. / Busch, Rebecca A.; Heneghan, Aaron F.; Pierre, Joseph; Wang, Xinying; Kudsk, Kenneth A.

In: Annals of surgery, Vol. 260, No. 3, 01.01.2014, p. 432-444.

Research output: Contribution to journalArticle

Busch, Rebecca A. ; Heneghan, Aaron F. ; Pierre, Joseph ; Wang, Xinying ; Kudsk, Kenneth A. / The enteric nervous system neuropeptide, bombesin, reverses innate immune impairments during parenteral nutrition. In: Annals of surgery. 2014 ; Vol. 260, No. 3. pp. 432-444.
@article{ebd874ca2ed14883b155cd5ff5465748,
title = "The enteric nervous system neuropeptide, bombesin, reverses innate immune impairments during parenteral nutrition",
abstract = "Background: Lack of enteral stimulation during parenteral nutrition (PN) impairs mucosal immunity. Bombesin (BBS), a gastrin-releasing peptide analogue, reverses PN-induced defects in acquired immunity. Paneth cells produce antimicrobial peptides (AMPs) of innate immunity for release after cholinergic stimulation. Objective: Determine if BBS restores AMPs and bactericidal function during PN. Methods: Intravenously cannulated male ICR mice were randomized to Chow, PN, or PN+BBS (15 μg 3 times daily, n = 7 per group) for 5 days. Ileum was analyzed for AMPs (Protein: sPLA2 by fluorescence, lysozyme and RegIII-γ by western andcryptdin-4 by ELISA; mRNA: all by RT-PCR). Cholinergic stimulated (100 μM bethanechol) ileal specimens assessed Pseudomonas bactericidal activity. Ileum (Chow: n = 7; PN: n = 9; PN+BBS: n = 8) was assessed for Escherichia coli invasion in ex-vivo culture. Results: PN significantly decreased most AMPs versus Chow while BBS maintained Chow levels (sPLA2: Chow: 107 + 14*, PN: 44.6 + 7.2, PN+BBS: 78.7 + 13.4* Fl/min/μL/total protein; Lysozyme: Chow: 63.9 + 11.9*, PN: 26.8 + 6.2; PN+BBS: 64.9 + 13.8* lysozyme/total protein; RegIII-γ: Chow: 51.5 + 10.0*, PN: 20.4 + 4.3, PN+BBS: 31.0 + 8.4 RegIII-γ/total protein; Cryptdin-4: Chow: 18.4 + 1.5*, PN: 12.7 + 1.6, PN+BBS: 26.1 + 2.4*† pg/mg [all *P < 0.05 vs PN and †P < 0.05 vs Chow]). Functionally, BBS prevented PN loss of bactericidal activity after cholinergic stimulation (Chow: 25.3 + 3.6*, PN: 13.0 + 3.2; PN+BBS: 27.0 + 4.7* percent bacterial killing, *P < 0.05 vs PN). BBS reduced bacterial invasion in unstimulated tissue barely missing significance (P = 0.06). Conclusions: The enteric nervous system (ENS) controls AMP levels in Paneth cells during PN but mucosal protection by innate immunity requires both ENS and parasympathetic stimulation.",
author = "Busch, {Rebecca A.} and Heneghan, {Aaron F.} and Joseph Pierre and Xinying Wang and Kudsk, {Kenneth A.}",
year = "2014",
month = "1",
day = "1",
doi = "10.1097/SLA.0000000000000871",
language = "English (US)",
volume = "260",
pages = "432--444",
journal = "Annals of Surgery",
issn = "0003-4932",
publisher = "Lippincott Williams and Wilkins",
number = "3",

}

TY - JOUR

T1 - The enteric nervous system neuropeptide, bombesin, reverses innate immune impairments during parenteral nutrition

AU - Busch, Rebecca A.

AU - Heneghan, Aaron F.

AU - Pierre, Joseph

AU - Wang, Xinying

AU - Kudsk, Kenneth A.

PY - 2014/1/1

Y1 - 2014/1/1

N2 - Background: Lack of enteral stimulation during parenteral nutrition (PN) impairs mucosal immunity. Bombesin (BBS), a gastrin-releasing peptide analogue, reverses PN-induced defects in acquired immunity. Paneth cells produce antimicrobial peptides (AMPs) of innate immunity for release after cholinergic stimulation. Objective: Determine if BBS restores AMPs and bactericidal function during PN. Methods: Intravenously cannulated male ICR mice were randomized to Chow, PN, or PN+BBS (15 μg 3 times daily, n = 7 per group) for 5 days. Ileum was analyzed for AMPs (Protein: sPLA2 by fluorescence, lysozyme and RegIII-γ by western andcryptdin-4 by ELISA; mRNA: all by RT-PCR). Cholinergic stimulated (100 μM bethanechol) ileal specimens assessed Pseudomonas bactericidal activity. Ileum (Chow: n = 7; PN: n = 9; PN+BBS: n = 8) was assessed for Escherichia coli invasion in ex-vivo culture. Results: PN significantly decreased most AMPs versus Chow while BBS maintained Chow levels (sPLA2: Chow: 107 + 14*, PN: 44.6 + 7.2, PN+BBS: 78.7 + 13.4* Fl/min/μL/total protein; Lysozyme: Chow: 63.9 + 11.9*, PN: 26.8 + 6.2; PN+BBS: 64.9 + 13.8* lysozyme/total protein; RegIII-γ: Chow: 51.5 + 10.0*, PN: 20.4 + 4.3, PN+BBS: 31.0 + 8.4 RegIII-γ/total protein; Cryptdin-4: Chow: 18.4 + 1.5*, PN: 12.7 + 1.6, PN+BBS: 26.1 + 2.4*† pg/mg [all *P < 0.05 vs PN and †P < 0.05 vs Chow]). Functionally, BBS prevented PN loss of bactericidal activity after cholinergic stimulation (Chow: 25.3 + 3.6*, PN: 13.0 + 3.2; PN+BBS: 27.0 + 4.7* percent bacterial killing, *P < 0.05 vs PN). BBS reduced bacterial invasion in unstimulated tissue barely missing significance (P = 0.06). Conclusions: The enteric nervous system (ENS) controls AMP levels in Paneth cells during PN but mucosal protection by innate immunity requires both ENS and parasympathetic stimulation.

AB - Background: Lack of enteral stimulation during parenteral nutrition (PN) impairs mucosal immunity. Bombesin (BBS), a gastrin-releasing peptide analogue, reverses PN-induced defects in acquired immunity. Paneth cells produce antimicrobial peptides (AMPs) of innate immunity for release after cholinergic stimulation. Objective: Determine if BBS restores AMPs and bactericidal function during PN. Methods: Intravenously cannulated male ICR mice were randomized to Chow, PN, or PN+BBS (15 μg 3 times daily, n = 7 per group) for 5 days. Ileum was analyzed for AMPs (Protein: sPLA2 by fluorescence, lysozyme and RegIII-γ by western andcryptdin-4 by ELISA; mRNA: all by RT-PCR). Cholinergic stimulated (100 μM bethanechol) ileal specimens assessed Pseudomonas bactericidal activity. Ileum (Chow: n = 7; PN: n = 9; PN+BBS: n = 8) was assessed for Escherichia coli invasion in ex-vivo culture. Results: PN significantly decreased most AMPs versus Chow while BBS maintained Chow levels (sPLA2: Chow: 107 + 14*, PN: 44.6 + 7.2, PN+BBS: 78.7 + 13.4* Fl/min/μL/total protein; Lysozyme: Chow: 63.9 + 11.9*, PN: 26.8 + 6.2; PN+BBS: 64.9 + 13.8* lysozyme/total protein; RegIII-γ: Chow: 51.5 + 10.0*, PN: 20.4 + 4.3, PN+BBS: 31.0 + 8.4 RegIII-γ/total protein; Cryptdin-4: Chow: 18.4 + 1.5*, PN: 12.7 + 1.6, PN+BBS: 26.1 + 2.4*† pg/mg [all *P < 0.05 vs PN and †P < 0.05 vs Chow]). Functionally, BBS prevented PN loss of bactericidal activity after cholinergic stimulation (Chow: 25.3 + 3.6*, PN: 13.0 + 3.2; PN+BBS: 27.0 + 4.7* percent bacterial killing, *P < 0.05 vs PN). BBS reduced bacterial invasion in unstimulated tissue barely missing significance (P = 0.06). Conclusions: The enteric nervous system (ENS) controls AMP levels in Paneth cells during PN but mucosal protection by innate immunity requires both ENS and parasympathetic stimulation.

UR - http://www.scopus.com/inward/record.url?scp=84906061879&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84906061879&partnerID=8YFLogxK

U2 - 10.1097/SLA.0000000000000871

DO - 10.1097/SLA.0000000000000871

M3 - Article

VL - 260

SP - 432

EP - 444

JO - Annals of Surgery

JF - Annals of Surgery

SN - 0003-4932

IS - 3

ER -