Tuberous sclerosis complex, mTOR, and the kidney

Report of an NIDDK-sponsored workshop

Elizabeth P. Henske, Rebekah Rasooly, Brian Siroky, John Bissler

Research output: Contribution to journalReview article

8 Citations (Scopus)

Abstract

Remarkable basic and translational advances have elucidated the role of the mammalian target of rapamycin (mTOR) signaling network in the pathogenesis of renal disease. Many of these advances originated from studies of the genetic disease tuberous sclerosis complex (TSC), leading to one of the clearest therapeutic opportunities to target mTOR with rapamycin and its analogs ("rapalogs"), which effectively inhibit mTOR complex 1 (mTORC1) by an allosteric mechanism. Clinical trials based on these discoveries have provided strongly positive therapeutic results in TSC (Bissler JJ, McCormack FX, Young LR, Elwing JM, Chuck G, Leonard JM, Schmithorst VJ, Laor T, Brody AS, Bean J, Salisbury S, Franz DN. N Engl J Med 358: 140-151, 2008; Krueger DA, Care MM, Holland K, Agricola K, Tudor C, Mangeshkar P, Wilson KA, Byars A, Sahmoud T, Franz DN. N Engl J Med 363: 1801-1811, 2010; McCormack FX, Inoue Y, Moss J, Singer LG, Strange C, Nakata K, Barker AF, Chapman JT, Brantly ML, Stocks JM, Brown KK, Lynch JP 3rd, Goldberg HJ, Young LR, Kinder BW, Downey GP, Sullivan EJ, Colby TV, McKay RT, Cohen MM, Korbee L, Taveira-DaSilva AM, Lee HS, Krischer JP, Trapnell BC. N Engl J Med 364: 1595-1606, 2011). In June 2013, the National Institute of Diabetes and Digestive and Kidney Diseases convened a small panel of physicians and scientists working in the field to identify key unknowns and define possible "next steps" in advancing understanding of TSC- and mTOR-dependent renal phenotypes. TSC-associated renal disease, which affects >85% of TSC patients, and was a major topic of discussion, focused on angiomyolipomas and epithelial cysts. The third major topic was the role of mTOR and mTOR inhibition in the pathogenesis and therapy of chronic renal disease. Renal cell carcinoma, while recognized as a manifestation of TSC that occurs in a small fraction of patients, was not the primary focus of this workshop and thus was omitted from panel discussions and from this report.

Original languageEnglish (US)
JournalAmerican Journal of Physiology - Renal Physiology
Volume306
Issue number3
DOIs
StatePublished - Feb 1 2014
Externally publishedYes

Fingerprint

National Institute of Diabetes and Digestive and Kidney Diseases (U.S.)
Tuberous Sclerosis
Sirolimus
Kidney
Education
Bryophyta
Angiomyolipoma
Inborn Genetic Diseases
Chronic Renal Insufficiency
Renal Cell Carcinoma
Netherlands
Cysts
Therapeutics
Clinical Trials
Physicians
Phenotype

All Science Journal Classification (ASJC) codes

  • Physiology
  • Urology

Cite this

Tuberous sclerosis complex, mTOR, and the kidney : Report of an NIDDK-sponsored workshop. / Henske, Elizabeth P.; Rasooly, Rebekah; Siroky, Brian; Bissler, John.

In: American Journal of Physiology - Renal Physiology, Vol. 306, No. 3, 01.02.2014.

Research output: Contribution to journalReview article

@article{e23e24bc648541fc807ea9b639bf4f5b,
title = "Tuberous sclerosis complex, mTOR, and the kidney: Report of an NIDDK-sponsored workshop",
abstract = "Remarkable basic and translational advances have elucidated the role of the mammalian target of rapamycin (mTOR) signaling network in the pathogenesis of renal disease. Many of these advances originated from studies of the genetic disease tuberous sclerosis complex (TSC), leading to one of the clearest therapeutic opportunities to target mTOR with rapamycin and its analogs ({"}rapalogs{"}), which effectively inhibit mTOR complex 1 (mTORC1) by an allosteric mechanism. Clinical trials based on these discoveries have provided strongly positive therapeutic results in TSC (Bissler JJ, McCormack FX, Young LR, Elwing JM, Chuck G, Leonard JM, Schmithorst VJ, Laor T, Brody AS, Bean J, Salisbury S, Franz DN. N Engl J Med 358: 140-151, 2008; Krueger DA, Care MM, Holland K, Agricola K, Tudor C, Mangeshkar P, Wilson KA, Byars A, Sahmoud T, Franz DN. N Engl J Med 363: 1801-1811, 2010; McCormack FX, Inoue Y, Moss J, Singer LG, Strange C, Nakata K, Barker AF, Chapman JT, Brantly ML, Stocks JM, Brown KK, Lynch JP 3rd, Goldberg HJ, Young LR, Kinder BW, Downey GP, Sullivan EJ, Colby TV, McKay RT, Cohen MM, Korbee L, Taveira-DaSilva AM, Lee HS, Krischer JP, Trapnell BC. N Engl J Med 364: 1595-1606, 2011). In June 2013, the National Institute of Diabetes and Digestive and Kidney Diseases convened a small panel of physicians and scientists working in the field to identify key unknowns and define possible {"}next steps{"} in advancing understanding of TSC- and mTOR-dependent renal phenotypes. TSC-associated renal disease, which affects >85{\%} of TSC patients, and was a major topic of discussion, focused on angiomyolipomas and epithelial cysts. The third major topic was the role of mTOR and mTOR inhibition in the pathogenesis and therapy of chronic renal disease. Renal cell carcinoma, while recognized as a manifestation of TSC that occurs in a small fraction of patients, was not the primary focus of this workshop and thus was omitted from panel discussions and from this report.",
author = "Henske, {Elizabeth P.} and Rebekah Rasooly and Brian Siroky and John Bissler",
year = "2014",
month = "2",
day = "1",
doi = "10.1152/ajprenal.00525.2013",
language = "English (US)",
volume = "306",
journal = "American Journal of Physiology",
issn = "1931-857X",
publisher = "American Physiological Society",
number = "3",

}

TY - JOUR

T1 - Tuberous sclerosis complex, mTOR, and the kidney

T2 - Report of an NIDDK-sponsored workshop

AU - Henske, Elizabeth P.

AU - Rasooly, Rebekah

AU - Siroky, Brian

AU - Bissler, John

PY - 2014/2/1

Y1 - 2014/2/1

N2 - Remarkable basic and translational advances have elucidated the role of the mammalian target of rapamycin (mTOR) signaling network in the pathogenesis of renal disease. Many of these advances originated from studies of the genetic disease tuberous sclerosis complex (TSC), leading to one of the clearest therapeutic opportunities to target mTOR with rapamycin and its analogs ("rapalogs"), which effectively inhibit mTOR complex 1 (mTORC1) by an allosteric mechanism. Clinical trials based on these discoveries have provided strongly positive therapeutic results in TSC (Bissler JJ, McCormack FX, Young LR, Elwing JM, Chuck G, Leonard JM, Schmithorst VJ, Laor T, Brody AS, Bean J, Salisbury S, Franz DN. N Engl J Med 358: 140-151, 2008; Krueger DA, Care MM, Holland K, Agricola K, Tudor C, Mangeshkar P, Wilson KA, Byars A, Sahmoud T, Franz DN. N Engl J Med 363: 1801-1811, 2010; McCormack FX, Inoue Y, Moss J, Singer LG, Strange C, Nakata K, Barker AF, Chapman JT, Brantly ML, Stocks JM, Brown KK, Lynch JP 3rd, Goldberg HJ, Young LR, Kinder BW, Downey GP, Sullivan EJ, Colby TV, McKay RT, Cohen MM, Korbee L, Taveira-DaSilva AM, Lee HS, Krischer JP, Trapnell BC. N Engl J Med 364: 1595-1606, 2011). In June 2013, the National Institute of Diabetes and Digestive and Kidney Diseases convened a small panel of physicians and scientists working in the field to identify key unknowns and define possible "next steps" in advancing understanding of TSC- and mTOR-dependent renal phenotypes. TSC-associated renal disease, which affects >85% of TSC patients, and was a major topic of discussion, focused on angiomyolipomas and epithelial cysts. The third major topic was the role of mTOR and mTOR inhibition in the pathogenesis and therapy of chronic renal disease. Renal cell carcinoma, while recognized as a manifestation of TSC that occurs in a small fraction of patients, was not the primary focus of this workshop and thus was omitted from panel discussions and from this report.

AB - Remarkable basic and translational advances have elucidated the role of the mammalian target of rapamycin (mTOR) signaling network in the pathogenesis of renal disease. Many of these advances originated from studies of the genetic disease tuberous sclerosis complex (TSC), leading to one of the clearest therapeutic opportunities to target mTOR with rapamycin and its analogs ("rapalogs"), which effectively inhibit mTOR complex 1 (mTORC1) by an allosteric mechanism. Clinical trials based on these discoveries have provided strongly positive therapeutic results in TSC (Bissler JJ, McCormack FX, Young LR, Elwing JM, Chuck G, Leonard JM, Schmithorst VJ, Laor T, Brody AS, Bean J, Salisbury S, Franz DN. N Engl J Med 358: 140-151, 2008; Krueger DA, Care MM, Holland K, Agricola K, Tudor C, Mangeshkar P, Wilson KA, Byars A, Sahmoud T, Franz DN. N Engl J Med 363: 1801-1811, 2010; McCormack FX, Inoue Y, Moss J, Singer LG, Strange C, Nakata K, Barker AF, Chapman JT, Brantly ML, Stocks JM, Brown KK, Lynch JP 3rd, Goldberg HJ, Young LR, Kinder BW, Downey GP, Sullivan EJ, Colby TV, McKay RT, Cohen MM, Korbee L, Taveira-DaSilva AM, Lee HS, Krischer JP, Trapnell BC. N Engl J Med 364: 1595-1606, 2011). In June 2013, the National Institute of Diabetes and Digestive and Kidney Diseases convened a small panel of physicians and scientists working in the field to identify key unknowns and define possible "next steps" in advancing understanding of TSC- and mTOR-dependent renal phenotypes. TSC-associated renal disease, which affects >85% of TSC patients, and was a major topic of discussion, focused on angiomyolipomas and epithelial cysts. The third major topic was the role of mTOR and mTOR inhibition in the pathogenesis and therapy of chronic renal disease. Renal cell carcinoma, while recognized as a manifestation of TSC that occurs in a small fraction of patients, was not the primary focus of this workshop and thus was omitted from panel discussions and from this report.

UR - http://www.scopus.com/inward/record.url?scp=84893359785&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84893359785&partnerID=8YFLogxK

U2 - 10.1152/ajprenal.00525.2013

DO - 10.1152/ajprenal.00525.2013

M3 - Review article

VL - 306

JO - American Journal of Physiology

JF - American Journal of Physiology

SN - 1931-857X

IS - 3

ER -