Tyrosine 450 in the voltage- and calcium-gated potassium channel of large conductance channel pore-forming (slo1) subunit mediates cholesterol protection against alcohol-induced constriction of cerebral arteries

Kelsey North, Shivantika Bisen, Alejandro Dopico, Anna Bukiya

Research output: Contribution to journalArticle

Abstract

Alcohol (ethanol) at physiologically relevant concentrations (,100 mM) constricts cerebral arteries via inhibition of voltage- and calcium-gated potassium channels of large conductance (BK) located in vascular smooth muscle (VSM). These channels consist of channel-forming slo1 (cbv1, KCNMA1) and accessory beta1 (KCNMB1) subunits. An increase in VSM cholesterol (CLR) via either dietary CLR intake or in vitro CLR enrichment was shown to protect against endothelium-independent, alcohol-induced constriction of cerebral arteries. The molecular mechanism(s) of this protection remains unknown. Here, we demonstrate that CLR enrichment of de-endothelialized middle cerebral arteries (MCAs) of rat increased CLR content in the VSM in a concentration-dependent manner. CLR enrichment blunted MCA constriction evoked by 18-75 mM but not by 100 mM alcohol. MCA enrichment with coprostanol (COPR) also blunted vasoconstriction by 50 mM alcohol, despite the fact that COPR and CLR differ in their ability to modify several major physical properties of the bilayer. CLR protection against 50 but not 100 mM alcohol was also observed in C57BL/6 and KCNMB1 knockout (KO) mice. Permeabilization of KCNMA1 KO MCAs with Y450Fcbv1 totally ablated CLR, but not COPR protection against vasoconstriction by 50 mM alcohol. Thus, CLR and alcohol interact at the level of the BK channel slo1 subunit, with Y450 being critical for CLR protection against alcohol-induced vasoconstriction. We document for the first time a functional competition between CLR and alcohol in regulating cerebral artery diameter and a critical role of a single amino acid within the BK channel pore-forming subunit in controlling CLR-alcohol interaction at the organ level.

Original languageEnglish (US)
Pages (from-to)234-244
Number of pages11
JournalJournal of Pharmacology and Experimental Therapeutics
Volume367
Issue number2
DOIs
StatePublished - Nov 1 2018

Fingerprint

Voltage-Gated Potassium Channels
Cerebral Arteries
Constriction
Tyrosine
Cholesterol
Alcohols
Calcium
Cholestanol
Middle Cerebral Artery
Vasoconstriction
Vascular Smooth Muscle
Large-Conductance Calcium-Activated Potassium Channels
Dietary Cholesterol
Knockout Mice
Endothelium
Ethanol

All Science Journal Classification (ASJC) codes

  • Molecular Medicine
  • Pharmacology

Cite this

@article{953754309d54400e9e6034f51853da98,
title = "Tyrosine 450 in the voltage- and calcium-gated potassium channel of large conductance channel pore-forming (slo1) subunit mediates cholesterol protection against alcohol-induced constriction of cerebral arteries",
abstract = "Alcohol (ethanol) at physiologically relevant concentrations (,100 mM) constricts cerebral arteries via inhibition of voltage- and calcium-gated potassium channels of large conductance (BK) located in vascular smooth muscle (VSM). These channels consist of channel-forming slo1 (cbv1, KCNMA1) and accessory beta1 (KCNMB1) subunits. An increase in VSM cholesterol (CLR) via either dietary CLR intake or in vitro CLR enrichment was shown to protect against endothelium-independent, alcohol-induced constriction of cerebral arteries. The molecular mechanism(s) of this protection remains unknown. Here, we demonstrate that CLR enrichment of de-endothelialized middle cerebral arteries (MCAs) of rat increased CLR content in the VSM in a concentration-dependent manner. CLR enrichment blunted MCA constriction evoked by 18-75 mM but not by 100 mM alcohol. MCA enrichment with coprostanol (COPR) also blunted vasoconstriction by 50 mM alcohol, despite the fact that COPR and CLR differ in their ability to modify several major physical properties of the bilayer. CLR protection against 50 but not 100 mM alcohol was also observed in C57BL/6 and KCNMB1 knockout (KO) mice. Permeabilization of KCNMA1 KO MCAs with Y450Fcbv1 totally ablated CLR, but not COPR protection against vasoconstriction by 50 mM alcohol. Thus, CLR and alcohol interact at the level of the BK channel slo1 subunit, with Y450 being critical for CLR protection against alcohol-induced vasoconstriction. We document for the first time a functional competition between CLR and alcohol in regulating cerebral artery diameter and a critical role of a single amino acid within the BK channel pore-forming subunit in controlling CLR-alcohol interaction at the organ level.",
author = "Kelsey North and Shivantika Bisen and Alejandro Dopico and Anna Bukiya",
year = "2018",
month = "11",
day = "1",
doi = "10.1124/jpet.118.250514",
language = "English (US)",
volume = "367",
pages = "234--244",
journal = "Journal of Pharmacology and Experimental Therapeutics",
issn = "0022-3565",
publisher = "American Society for Pharmacology and Experimental Therapeutics",
number = "2",

}

TY - JOUR

T1 - Tyrosine 450 in the voltage- and calcium-gated potassium channel of large conductance channel pore-forming (slo1) subunit mediates cholesterol protection against alcohol-induced constriction of cerebral arteries

AU - North, Kelsey

AU - Bisen, Shivantika

AU - Dopico, Alejandro

AU - Bukiya, Anna

PY - 2018/11/1

Y1 - 2018/11/1

N2 - Alcohol (ethanol) at physiologically relevant concentrations (,100 mM) constricts cerebral arteries via inhibition of voltage- and calcium-gated potassium channels of large conductance (BK) located in vascular smooth muscle (VSM). These channels consist of channel-forming slo1 (cbv1, KCNMA1) and accessory beta1 (KCNMB1) subunits. An increase in VSM cholesterol (CLR) via either dietary CLR intake or in vitro CLR enrichment was shown to protect against endothelium-independent, alcohol-induced constriction of cerebral arteries. The molecular mechanism(s) of this protection remains unknown. Here, we demonstrate that CLR enrichment of de-endothelialized middle cerebral arteries (MCAs) of rat increased CLR content in the VSM in a concentration-dependent manner. CLR enrichment blunted MCA constriction evoked by 18-75 mM but not by 100 mM alcohol. MCA enrichment with coprostanol (COPR) also blunted vasoconstriction by 50 mM alcohol, despite the fact that COPR and CLR differ in their ability to modify several major physical properties of the bilayer. CLR protection against 50 but not 100 mM alcohol was also observed in C57BL/6 and KCNMB1 knockout (KO) mice. Permeabilization of KCNMA1 KO MCAs with Y450Fcbv1 totally ablated CLR, but not COPR protection against vasoconstriction by 50 mM alcohol. Thus, CLR and alcohol interact at the level of the BK channel slo1 subunit, with Y450 being critical for CLR protection against alcohol-induced vasoconstriction. We document for the first time a functional competition between CLR and alcohol in regulating cerebral artery diameter and a critical role of a single amino acid within the BK channel pore-forming subunit in controlling CLR-alcohol interaction at the organ level.

AB - Alcohol (ethanol) at physiologically relevant concentrations (,100 mM) constricts cerebral arteries via inhibition of voltage- and calcium-gated potassium channels of large conductance (BK) located in vascular smooth muscle (VSM). These channels consist of channel-forming slo1 (cbv1, KCNMA1) and accessory beta1 (KCNMB1) subunits. An increase in VSM cholesterol (CLR) via either dietary CLR intake or in vitro CLR enrichment was shown to protect against endothelium-independent, alcohol-induced constriction of cerebral arteries. The molecular mechanism(s) of this protection remains unknown. Here, we demonstrate that CLR enrichment of de-endothelialized middle cerebral arteries (MCAs) of rat increased CLR content in the VSM in a concentration-dependent manner. CLR enrichment blunted MCA constriction evoked by 18-75 mM but not by 100 mM alcohol. MCA enrichment with coprostanol (COPR) also blunted vasoconstriction by 50 mM alcohol, despite the fact that COPR and CLR differ in their ability to modify several major physical properties of the bilayer. CLR protection against 50 but not 100 mM alcohol was also observed in C57BL/6 and KCNMB1 knockout (KO) mice. Permeabilization of KCNMA1 KO MCAs with Y450Fcbv1 totally ablated CLR, but not COPR protection against vasoconstriction by 50 mM alcohol. Thus, CLR and alcohol interact at the level of the BK channel slo1 subunit, with Y450 being critical for CLR protection against alcohol-induced vasoconstriction. We document for the first time a functional competition between CLR and alcohol in regulating cerebral artery diameter and a critical role of a single amino acid within the BK channel pore-forming subunit in controlling CLR-alcohol interaction at the organ level.

UR - http://www.scopus.com/inward/record.url?scp=85054371967&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85054371967&partnerID=8YFLogxK

U2 - 10.1124/jpet.118.250514

DO - 10.1124/jpet.118.250514

M3 - Article

VL - 367

SP - 234

EP - 244

JO - Journal of Pharmacology and Experimental Therapeutics

JF - Journal of Pharmacology and Experimental Therapeutics

SN - 0022-3565

IS - 2

ER -