Ultrasound-Enhanced Thrombolysis in Acute Ischemic Stroke

Potential, Failures, and Safety

Research output: Contribution to journalArticle

57 Citations (Scopus)

Abstract

Experimental and pilot clinical evidence shows that thrombolysis with intravenous tissue plasminogen activator (TPA) can be enhanced with ultrasound. Ultrasound delivers mechanical pressure waves to the clot, thus exposing more thrombus surface to circulating drug. The international multicenter phase II CLOTBUST trial showed that, in patients with acute ischemic stroke, transcranial Doppler (TCD) monitoring augments TPA-induced arterial recanalization, with a nonsignificant trend toward an increased rate of recovery from stroke, compared with placebo. In the CLOTBUST trial, the dramatic clinical recovery from stroke coupled with complete recanalization within 2 hours after TPA bolus occurred in 25% of patients treated with TPA + TCD (n = 63), compared with 8% of those who received TPA alone (n = 63, P = 0.02). Different results were achieved in smaller studies that used transcranial color-coded duplex sonography (TCCD) and a nonimaging therapeutic ultrasound system. The findings of the TRUMBI trial (26 patients) underscored the adverse bioeffects of mid-kilohertz (300 kHz) ultrasound, such as promotion of bleeding in brain areas both affected and unaffected by ischemia. Exposure to multifrequency, multielement duplex ultrasound resulted in a trend toward a higher risk of hemorrhagic transformation. To further enhance the ability of TPA to break up thrombi, current ongoing clinical trials include phase II studies of a single-beam, 2-MHz TCD with perflutren lipid microspheres. Enhancement of intra-arterial TPA delivery is being clinically tested with 1.7-2.1 MHz pulsed-wave ultrasound (EKOS catheter). Multinational dose escalation studies of microspheres and the development of an operator-independent ultrasound device are underway.

Original languageEnglish (US)
Pages (from-to)420-427
Number of pages8
JournalNeurotherapeutics
Volume4
Issue number3
DOIs
StatePublished - Jul 1 2007

Fingerprint

Tissue Plasminogen Activator
Stroke
Safety
perflutren
Microspheres
Thrombosis
Phase II Clinical Trials
Ultrasonography
Ischemia
Catheters
Color
Placebos
Hemorrhage
Lipids
Pressure
Equipment and Supplies
Brain
Pharmaceutical Preparations

All Science Journal Classification (ASJC) codes

  • Pharmacology
  • Clinical Neurology
  • Pharmacology (medical)

Cite this

Ultrasound-Enhanced Thrombolysis in Acute Ischemic Stroke : Potential, Failures, and Safety. / Tsivgoulis, Georgios; Alexandrov, Andrei.

In: Neurotherapeutics, Vol. 4, No. 3, 01.07.2007, p. 420-427.

Research output: Contribution to journalArticle

@article{e0e1c7c93c7e4044b744320d775c9e6e,
title = "Ultrasound-Enhanced Thrombolysis in Acute Ischemic Stroke: Potential, Failures, and Safety",
abstract = "Experimental and pilot clinical evidence shows that thrombolysis with intravenous tissue plasminogen activator (TPA) can be enhanced with ultrasound. Ultrasound delivers mechanical pressure waves to the clot, thus exposing more thrombus surface to circulating drug. The international multicenter phase II CLOTBUST trial showed that, in patients with acute ischemic stroke, transcranial Doppler (TCD) monitoring augments TPA-induced arterial recanalization, with a nonsignificant trend toward an increased rate of recovery from stroke, compared with placebo. In the CLOTBUST trial, the dramatic clinical recovery from stroke coupled with complete recanalization within 2 hours after TPA bolus occurred in 25{\%} of patients treated with TPA + TCD (n = 63), compared with 8{\%} of those who received TPA alone (n = 63, P = 0.02). Different results were achieved in smaller studies that used transcranial color-coded duplex sonography (TCCD) and a nonimaging therapeutic ultrasound system. The findings of the TRUMBI trial (26 patients) underscored the adverse bioeffects of mid-kilohertz (300 kHz) ultrasound, such as promotion of bleeding in brain areas both affected and unaffected by ischemia. Exposure to multifrequency, multielement duplex ultrasound resulted in a trend toward a higher risk of hemorrhagic transformation. To further enhance the ability of TPA to break up thrombi, current ongoing clinical trials include phase II studies of a single-beam, 2-MHz TCD with perflutren lipid microspheres. Enhancement of intra-arterial TPA delivery is being clinically tested with 1.7-2.1 MHz pulsed-wave ultrasound (EKOS catheter). Multinational dose escalation studies of microspheres and the development of an operator-independent ultrasound device are underway.",
author = "Georgios Tsivgoulis and Andrei Alexandrov",
year = "2007",
month = "7",
day = "1",
doi = "10.1016/j.nurt.2007.05.012",
language = "English (US)",
volume = "4",
pages = "420--427",
journal = "Neurotherapeutics",
issn = "1933-7213",
publisher = "Springer New York",
number = "3",

}

TY - JOUR

T1 - Ultrasound-Enhanced Thrombolysis in Acute Ischemic Stroke

T2 - Potential, Failures, and Safety

AU - Tsivgoulis, Georgios

AU - Alexandrov, Andrei

PY - 2007/7/1

Y1 - 2007/7/1

N2 - Experimental and pilot clinical evidence shows that thrombolysis with intravenous tissue plasminogen activator (TPA) can be enhanced with ultrasound. Ultrasound delivers mechanical pressure waves to the clot, thus exposing more thrombus surface to circulating drug. The international multicenter phase II CLOTBUST trial showed that, in patients with acute ischemic stroke, transcranial Doppler (TCD) monitoring augments TPA-induced arterial recanalization, with a nonsignificant trend toward an increased rate of recovery from stroke, compared with placebo. In the CLOTBUST trial, the dramatic clinical recovery from stroke coupled with complete recanalization within 2 hours after TPA bolus occurred in 25% of patients treated with TPA + TCD (n = 63), compared with 8% of those who received TPA alone (n = 63, P = 0.02). Different results were achieved in smaller studies that used transcranial color-coded duplex sonography (TCCD) and a nonimaging therapeutic ultrasound system. The findings of the TRUMBI trial (26 patients) underscored the adverse bioeffects of mid-kilohertz (300 kHz) ultrasound, such as promotion of bleeding in brain areas both affected and unaffected by ischemia. Exposure to multifrequency, multielement duplex ultrasound resulted in a trend toward a higher risk of hemorrhagic transformation. To further enhance the ability of TPA to break up thrombi, current ongoing clinical trials include phase II studies of a single-beam, 2-MHz TCD with perflutren lipid microspheres. Enhancement of intra-arterial TPA delivery is being clinically tested with 1.7-2.1 MHz pulsed-wave ultrasound (EKOS catheter). Multinational dose escalation studies of microspheres and the development of an operator-independent ultrasound device are underway.

AB - Experimental and pilot clinical evidence shows that thrombolysis with intravenous tissue plasminogen activator (TPA) can be enhanced with ultrasound. Ultrasound delivers mechanical pressure waves to the clot, thus exposing more thrombus surface to circulating drug. The international multicenter phase II CLOTBUST trial showed that, in patients with acute ischemic stroke, transcranial Doppler (TCD) monitoring augments TPA-induced arterial recanalization, with a nonsignificant trend toward an increased rate of recovery from stroke, compared with placebo. In the CLOTBUST trial, the dramatic clinical recovery from stroke coupled with complete recanalization within 2 hours after TPA bolus occurred in 25% of patients treated with TPA + TCD (n = 63), compared with 8% of those who received TPA alone (n = 63, P = 0.02). Different results were achieved in smaller studies that used transcranial color-coded duplex sonography (TCCD) and a nonimaging therapeutic ultrasound system. The findings of the TRUMBI trial (26 patients) underscored the adverse bioeffects of mid-kilohertz (300 kHz) ultrasound, such as promotion of bleeding in brain areas both affected and unaffected by ischemia. Exposure to multifrequency, multielement duplex ultrasound resulted in a trend toward a higher risk of hemorrhagic transformation. To further enhance the ability of TPA to break up thrombi, current ongoing clinical trials include phase II studies of a single-beam, 2-MHz TCD with perflutren lipid microspheres. Enhancement of intra-arterial TPA delivery is being clinically tested with 1.7-2.1 MHz pulsed-wave ultrasound (EKOS catheter). Multinational dose escalation studies of microspheres and the development of an operator-independent ultrasound device are underway.

UR - http://www.scopus.com/inward/record.url?scp=34250730176&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=34250730176&partnerID=8YFLogxK

U2 - 10.1016/j.nurt.2007.05.012

DO - 10.1016/j.nurt.2007.05.012

M3 - Article

VL - 4

SP - 420

EP - 427

JO - Neurotherapeutics

JF - Neurotherapeutics

SN - 1933-7213

IS - 3

ER -