Ultrastructural observations on the expression of axonin-1

Implications for the fasciculation of sensory axons during axonal outgrowth into the chick hindlimb

Yi Xue, Marcia Honig

Research output: Contribution to journalArticle

17 Citations (Scopus)

Abstract

To help understand how axons interact as they grow into the developing chick hindlimb, we used electron microscopy in conjunction with immunoperoxidase staining for the cell adhesion molecule axonin-1 to label sensory axons. The results showed that sensory axons travel together in bundles, tightly apposed to one another. In contrast, motoneuron axons are more widely spaced, although motoneuron axons situated at the perimeter of sensory axon bundles are found in close contact with neighboring sensory axons. Sensory growth cones and lamellipodia tend to be located centrally within the bundles, with several lamellipodia typically being found stacked together. Strikingly, regions of close axonal apposition are accompanied by axonin-1 expression, suggesting that such contacts are indeed adhesive. Taken together, these observations suggest that groups of sensory axons of a similar age grow together, with some of the older sensory axons fasciculating along motoneuron axons and younger sensory axons later fasciculating along older sensory axons. Axons situated at the periphery of sensory bundles are typically partly labelled, such that axonin-1 is expressed on membranes apposing other labelled axons but not on those facing unlabelled axons or unlabelled Schwann cells. Thus, axonin-1 appears to become redistributed within the membranes of axons growing into the limb, as it does on cultured neurons. In contrast, the neuron-glia cell adhesion molecule (NgCAM), which binds heterophilically to axonin-1, appears uniformly distributed on even those axons that would have an asymmetric distribution of axonin-1. Thus, the localization of axonin-1 strongly suggests that it plays an important role in sensory axon fasciculation, but the relative contributions of its interactions with various potential ligands are unclear. Finally, we found that some sensory growth cones have lamellipodia that are spread over considerable expanses. This suggests that although fasciculation is important in sensory axon guidance, sensory axons may also explore the local environment.

Original languageEnglish (US)
Pages (from-to)299-317
Number of pages19
JournalJournal of Comparative Neurology
Volume408
Issue number3
DOIs
StatePublished - Jun 7 1999

Fingerprint

Contactin 2
Hindlimb
Axons
Pseudopodia
Motor Neurons
Axon Fasciculation
Growth Cones
Neuron-Glia Cell Adhesion Molecules

All Science Journal Classification (ASJC) codes

  • Neuroscience(all)

Cite this

@article{93fa80da6cde4adf80808b449705294d,
title = "Ultrastructural observations on the expression of axonin-1: Implications for the fasciculation of sensory axons during axonal outgrowth into the chick hindlimb",
abstract = "To help understand how axons interact as they grow into the developing chick hindlimb, we used electron microscopy in conjunction with immunoperoxidase staining for the cell adhesion molecule axonin-1 to label sensory axons. The results showed that sensory axons travel together in bundles, tightly apposed to one another. In contrast, motoneuron axons are more widely spaced, although motoneuron axons situated at the perimeter of sensory axon bundles are found in close contact with neighboring sensory axons. Sensory growth cones and lamellipodia tend to be located centrally within the bundles, with several lamellipodia typically being found stacked together. Strikingly, regions of close axonal apposition are accompanied by axonin-1 expression, suggesting that such contacts are indeed adhesive. Taken together, these observations suggest that groups of sensory axons of a similar age grow together, with some of the older sensory axons fasciculating along motoneuron axons and younger sensory axons later fasciculating along older sensory axons. Axons situated at the periphery of sensory bundles are typically partly labelled, such that axonin-1 is expressed on membranes apposing other labelled axons but not on those facing unlabelled axons or unlabelled Schwann cells. Thus, axonin-1 appears to become redistributed within the membranes of axons growing into the limb, as it does on cultured neurons. In contrast, the neuron-glia cell adhesion molecule (NgCAM), which binds heterophilically to axonin-1, appears uniformly distributed on even those axons that would have an asymmetric distribution of axonin-1. Thus, the localization of axonin-1 strongly suggests that it plays an important role in sensory axon fasciculation, but the relative contributions of its interactions with various potential ligands are unclear. Finally, we found that some sensory growth cones have lamellipodia that are spread over considerable expanses. This suggests that although fasciculation is important in sensory axon guidance, sensory axons may also explore the local environment.",
author = "Yi Xue and Marcia Honig",
year = "1999",
month = "6",
day = "7",
doi = "10.1002/(SICI)1096-9861(19990607)408:3<299::AID-CNE1>3.0.CO;2-N",
language = "English (US)",
volume = "408",
pages = "299--317",
journal = "Journal of Comparative Neurology",
issn = "0021-9967",
publisher = "Wiley-Liss Inc.",
number = "3",

}

TY - JOUR

T1 - Ultrastructural observations on the expression of axonin-1

T2 - Implications for the fasciculation of sensory axons during axonal outgrowth into the chick hindlimb

AU - Xue, Yi

AU - Honig, Marcia

PY - 1999/6/7

Y1 - 1999/6/7

N2 - To help understand how axons interact as they grow into the developing chick hindlimb, we used electron microscopy in conjunction with immunoperoxidase staining for the cell adhesion molecule axonin-1 to label sensory axons. The results showed that sensory axons travel together in bundles, tightly apposed to one another. In contrast, motoneuron axons are more widely spaced, although motoneuron axons situated at the perimeter of sensory axon bundles are found in close contact with neighboring sensory axons. Sensory growth cones and lamellipodia tend to be located centrally within the bundles, with several lamellipodia typically being found stacked together. Strikingly, regions of close axonal apposition are accompanied by axonin-1 expression, suggesting that such contacts are indeed adhesive. Taken together, these observations suggest that groups of sensory axons of a similar age grow together, with some of the older sensory axons fasciculating along motoneuron axons and younger sensory axons later fasciculating along older sensory axons. Axons situated at the periphery of sensory bundles are typically partly labelled, such that axonin-1 is expressed on membranes apposing other labelled axons but not on those facing unlabelled axons or unlabelled Schwann cells. Thus, axonin-1 appears to become redistributed within the membranes of axons growing into the limb, as it does on cultured neurons. In contrast, the neuron-glia cell adhesion molecule (NgCAM), which binds heterophilically to axonin-1, appears uniformly distributed on even those axons that would have an asymmetric distribution of axonin-1. Thus, the localization of axonin-1 strongly suggests that it plays an important role in sensory axon fasciculation, but the relative contributions of its interactions with various potential ligands are unclear. Finally, we found that some sensory growth cones have lamellipodia that are spread over considerable expanses. This suggests that although fasciculation is important in sensory axon guidance, sensory axons may also explore the local environment.

AB - To help understand how axons interact as they grow into the developing chick hindlimb, we used electron microscopy in conjunction with immunoperoxidase staining for the cell adhesion molecule axonin-1 to label sensory axons. The results showed that sensory axons travel together in bundles, tightly apposed to one another. In contrast, motoneuron axons are more widely spaced, although motoneuron axons situated at the perimeter of sensory axon bundles are found in close contact with neighboring sensory axons. Sensory growth cones and lamellipodia tend to be located centrally within the bundles, with several lamellipodia typically being found stacked together. Strikingly, regions of close axonal apposition are accompanied by axonin-1 expression, suggesting that such contacts are indeed adhesive. Taken together, these observations suggest that groups of sensory axons of a similar age grow together, with some of the older sensory axons fasciculating along motoneuron axons and younger sensory axons later fasciculating along older sensory axons. Axons situated at the periphery of sensory bundles are typically partly labelled, such that axonin-1 is expressed on membranes apposing other labelled axons but not on those facing unlabelled axons or unlabelled Schwann cells. Thus, axonin-1 appears to become redistributed within the membranes of axons growing into the limb, as it does on cultured neurons. In contrast, the neuron-glia cell adhesion molecule (NgCAM), which binds heterophilically to axonin-1, appears uniformly distributed on even those axons that would have an asymmetric distribution of axonin-1. Thus, the localization of axonin-1 strongly suggests that it plays an important role in sensory axon fasciculation, but the relative contributions of its interactions with various potential ligands are unclear. Finally, we found that some sensory growth cones have lamellipodia that are spread over considerable expanses. This suggests that although fasciculation is important in sensory axon guidance, sensory axons may also explore the local environment.

UR - http://www.scopus.com/inward/record.url?scp=0033532496&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0033532496&partnerID=8YFLogxK

U2 - 10.1002/(SICI)1096-9861(19990607)408:3<299::AID-CNE1>3.0.CO;2-N

DO - 10.1002/(SICI)1096-9861(19990607)408:3<299::AID-CNE1>3.0.CO;2-N

M3 - Article

VL - 408

SP - 299

EP - 317

JO - Journal of Comparative Neurology

JF - Journal of Comparative Neurology

SN - 0021-9967

IS - 3

ER -