Zinc inhibits doxorubicin-activated calcineurin signal transduction pathway in H9c2 embryonic rat cardiac cells

Kevyn E. Merten, Youchun Jiang, Yujian Kang

Research output: Contribution to journalArticle

13 Citations (Scopus)

Abstract

Elevation of the zinc-binding protein metallothionein (MT) in the heart inhibits doxorubicin (DOX)-induced myocardial apoptosis and heart hypertrophy. Zinc release from MT in response to oxidative stress has been suggested as a mechanism of action of MT protection from DOX toxicity, and calcineurin is involved in the signaling pathways leading to myocardial apoptosis and heart hypertrophy. The present study was undertaken to determine if zinc can modulate the DOX-activated calcineurin signaling pathway. H9c2 cells were treated with 1 μM DOX, and zinc release was monitored by a zinc ion-specific fluorophore, zinquin ethyl ester. Additionally, DOX-activated calcineurin signaling was detected by a calcineurin-dependent nuclear factor of activated T-cell reporter. DOX treatment induced an increase in intracellular labile zinc and activated calcineurin signaling. Pretreatment of H9c2 cells with a zinc-specific, membrane-permeable chelating agent, N,N,N′,N′-tetrakis(2- pyridylmethyl)ethylenediamine (TPEN), inhibited the increase in intracellular labile zinc and increased the DOX-activated calcineurin signaling. Pretreatment of H9c2 cells with exogenously added zinc attenuated the DOX-activated calcineurin signaling in a dose-dependent manner. However, neither TPEN nor addition of exogenous zinc affected DOX-induced cellular hypertrophy or DOX-induced decrease in cell viability. Additionally, inhibition of DOX-induced calcineurin signaling with the calcineurin inhibitors cyclosporine A or tacrolimus (FK506) failed to restrict the DOX-induced decrease in cell viability. These results indicate that zinc suppresses DOX-induced calcineurin signaling in H9c2 cells; however, calcineurin signaling is not involved in the DOX-induced decrease in cell viability in H9c2 cells. (It had been shown previously that calcineurin is also not necessary for DOX-induced H9c2 cell hypertrophy.)

Original languageEnglish (US)
Pages (from-to)682-689
Number of pages8
JournalExperimental Biology and Medicine
Volume232
Issue number5
StatePublished - May 1 2007
Externally publishedYes

Fingerprint

Signal transduction
Calcineurin
Doxorubicin
Zinc
Rats
Signal Transduction
ethylenediamine
Metallothionein
Cell Survival
Cells
Cardiomegaly
Tacrolimus
Hypertrophy
Apoptosis
NFATC Transcription Factors
Oxidative stress
Fluorophores
Chelating Agents

All Science Journal Classification (ASJC) codes

  • Biochemistry, Genetics and Molecular Biology(all)

Cite this

Zinc inhibits doxorubicin-activated calcineurin signal transduction pathway in H9c2 embryonic rat cardiac cells. / Merten, Kevyn E.; Jiang, Youchun; Kang, Yujian.

In: Experimental Biology and Medicine, Vol. 232, No. 5, 01.05.2007, p. 682-689.

Research output: Contribution to journalArticle

@article{f692ce563189447a97661948091ae241,
title = "Zinc inhibits doxorubicin-activated calcineurin signal transduction pathway in H9c2 embryonic rat cardiac cells",
abstract = "Elevation of the zinc-binding protein metallothionein (MT) in the heart inhibits doxorubicin (DOX)-induced myocardial apoptosis and heart hypertrophy. Zinc release from MT in response to oxidative stress has been suggested as a mechanism of action of MT protection from DOX toxicity, and calcineurin is involved in the signaling pathways leading to myocardial apoptosis and heart hypertrophy. The present study was undertaken to determine if zinc can modulate the DOX-activated calcineurin signaling pathway. H9c2 cells were treated with 1 μM DOX, and zinc release was monitored by a zinc ion-specific fluorophore, zinquin ethyl ester. Additionally, DOX-activated calcineurin signaling was detected by a calcineurin-dependent nuclear factor of activated T-cell reporter. DOX treatment induced an increase in intracellular labile zinc and activated calcineurin signaling. Pretreatment of H9c2 cells with a zinc-specific, membrane-permeable chelating agent, N,N,N′,N′-tetrakis(2- pyridylmethyl)ethylenediamine (TPEN), inhibited the increase in intracellular labile zinc and increased the DOX-activated calcineurin signaling. Pretreatment of H9c2 cells with exogenously added zinc attenuated the DOX-activated calcineurin signaling in a dose-dependent manner. However, neither TPEN nor addition of exogenous zinc affected DOX-induced cellular hypertrophy or DOX-induced decrease in cell viability. Additionally, inhibition of DOX-induced calcineurin signaling with the calcineurin inhibitors cyclosporine A or tacrolimus (FK506) failed to restrict the DOX-induced decrease in cell viability. These results indicate that zinc suppresses DOX-induced calcineurin signaling in H9c2 cells; however, calcineurin signaling is not involved in the DOX-induced decrease in cell viability in H9c2 cells. (It had been shown previously that calcineurin is also not necessary for DOX-induced H9c2 cell hypertrophy.)",
author = "Merten, {Kevyn E.} and Youchun Jiang and Yujian Kang",
year = "2007",
month = "5",
day = "1",
language = "English (US)",
volume = "232",
pages = "682--689",
journal = "Experimental Biology and Medicine",
issn = "1535-3702",
publisher = "SAGE Publications Ltd",
number = "5",

}

TY - JOUR

T1 - Zinc inhibits doxorubicin-activated calcineurin signal transduction pathway in H9c2 embryonic rat cardiac cells

AU - Merten, Kevyn E.

AU - Jiang, Youchun

AU - Kang, Yujian

PY - 2007/5/1

Y1 - 2007/5/1

N2 - Elevation of the zinc-binding protein metallothionein (MT) in the heart inhibits doxorubicin (DOX)-induced myocardial apoptosis and heart hypertrophy. Zinc release from MT in response to oxidative stress has been suggested as a mechanism of action of MT protection from DOX toxicity, and calcineurin is involved in the signaling pathways leading to myocardial apoptosis and heart hypertrophy. The present study was undertaken to determine if zinc can modulate the DOX-activated calcineurin signaling pathway. H9c2 cells were treated with 1 μM DOX, and zinc release was monitored by a zinc ion-specific fluorophore, zinquin ethyl ester. Additionally, DOX-activated calcineurin signaling was detected by a calcineurin-dependent nuclear factor of activated T-cell reporter. DOX treatment induced an increase in intracellular labile zinc and activated calcineurin signaling. Pretreatment of H9c2 cells with a zinc-specific, membrane-permeable chelating agent, N,N,N′,N′-tetrakis(2- pyridylmethyl)ethylenediamine (TPEN), inhibited the increase in intracellular labile zinc and increased the DOX-activated calcineurin signaling. Pretreatment of H9c2 cells with exogenously added zinc attenuated the DOX-activated calcineurin signaling in a dose-dependent manner. However, neither TPEN nor addition of exogenous zinc affected DOX-induced cellular hypertrophy or DOX-induced decrease in cell viability. Additionally, inhibition of DOX-induced calcineurin signaling with the calcineurin inhibitors cyclosporine A or tacrolimus (FK506) failed to restrict the DOX-induced decrease in cell viability. These results indicate that zinc suppresses DOX-induced calcineurin signaling in H9c2 cells; however, calcineurin signaling is not involved in the DOX-induced decrease in cell viability in H9c2 cells. (It had been shown previously that calcineurin is also not necessary for DOX-induced H9c2 cell hypertrophy.)

AB - Elevation of the zinc-binding protein metallothionein (MT) in the heart inhibits doxorubicin (DOX)-induced myocardial apoptosis and heart hypertrophy. Zinc release from MT in response to oxidative stress has been suggested as a mechanism of action of MT protection from DOX toxicity, and calcineurin is involved in the signaling pathways leading to myocardial apoptosis and heart hypertrophy. The present study was undertaken to determine if zinc can modulate the DOX-activated calcineurin signaling pathway. H9c2 cells were treated with 1 μM DOX, and zinc release was monitored by a zinc ion-specific fluorophore, zinquin ethyl ester. Additionally, DOX-activated calcineurin signaling was detected by a calcineurin-dependent nuclear factor of activated T-cell reporter. DOX treatment induced an increase in intracellular labile zinc and activated calcineurin signaling. Pretreatment of H9c2 cells with a zinc-specific, membrane-permeable chelating agent, N,N,N′,N′-tetrakis(2- pyridylmethyl)ethylenediamine (TPEN), inhibited the increase in intracellular labile zinc and increased the DOX-activated calcineurin signaling. Pretreatment of H9c2 cells with exogenously added zinc attenuated the DOX-activated calcineurin signaling in a dose-dependent manner. However, neither TPEN nor addition of exogenous zinc affected DOX-induced cellular hypertrophy or DOX-induced decrease in cell viability. Additionally, inhibition of DOX-induced calcineurin signaling with the calcineurin inhibitors cyclosporine A or tacrolimus (FK506) failed to restrict the DOX-induced decrease in cell viability. These results indicate that zinc suppresses DOX-induced calcineurin signaling in H9c2 cells; however, calcineurin signaling is not involved in the DOX-induced decrease in cell viability in H9c2 cells. (It had been shown previously that calcineurin is also not necessary for DOX-induced H9c2 cell hypertrophy.)

UR - http://www.scopus.com/inward/record.url?scp=34247593860&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=34247593860&partnerID=8YFLogxK

M3 - Article

VL - 232

SP - 682

EP - 689

JO - Experimental Biology and Medicine

JF - Experimental Biology and Medicine

SN - 1535-3702

IS - 5

ER -